CS 4530: Fundamentals of Software Engineering
Lesson 4.3: Teams

Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

software engineering must encompass 3 Ps:

PROGRAMS, PROCESSES, AND PEOPLE

Learning Goals for this Lesson

e At the end of this lesson, you should be able to

e Explain key advantages of working in a team and sharing
information with your team

* Describe the HRT pillars of social interaction

* Understand why small teams are effective for agile
processes

* Apply root-cause analysis to construct a blameless post-
mortem of a team project

Why Teams? "The 10x Engineer”

\9

What makes a 10x

Developer*

@ Davide de Paolis Mar 11, 2019 - 6 min read

ROCK STAR DEVELOPER

WE'RE LOOKING FOR A
ROCK STAR DEVELOPER
TO JOIN QUR TEAM

(AsKELETON_CLAW

SKELETONCLAW.COM

Why Teams? Software Engineering Draws on
Many Skills

* Nobody is an expert in everything:
* Product management
* Project management
» System-level design and architecture
* Unit-level design
* Development
* Testing
* Operations
* Maintenance

Ai&m@@l@%ﬁ
y /e
PR

Vi

Why Teams? T Bus Factor

ol . il LN S:ﬁ =Z oo” N Pir /‘

m Even if one person can own all of a prOJect
3 relied tog

imh

|—

BE mm |EE
BB Bm (==
(BB m2 =m =

ey ; d&&
P R R L 88 8 % 2 % Xk an

| (mE my

Teams are hard: Brooks’ Law

“Adding manpower to a late
software project makes it

144
later
Fred Brooks, 1975

What goes wrong with teams in software
development?

* How do you structure teams effectively?

* How do you encourage teams to share knowledge and collaborate?
* How do you encourage team-members to treat each other well?

* How do you respond to failures?

How do we

structure teams
efficiently?

e Examining Brooks’ Law: “Adding
manpower to a late software

project makes it later”

* How many communication links

are needed to finish a task?

* Self-organizing teams have
proven more effective

vy wR 9
o, |

’ 3,

£ e I
// / ; //

P

A e e |

Facebook originally organized teams by platform
each managed the app on their own platform only

* If you work on the android teams, you work on
putting all of the apps on android

Desktop/Web Android iOS

Group messages

D Messages Chat

. Events
. Photos

. Android Photo Albums

Group messages

Chat

Upcoming Events Upcoming Events

Birthdays

Birthdays

+

Photo Albums

Photo Picker

Platform Experts

D 10S Photo Picker

Product Experts

https://www.youtube.com/watch?v=Nffzkkdq7GM

https://www.youtube.com/watch?v=Nffzkkdq7GM

But they eventually switched to "product”
teams...

* If you are in the chat group, you work on the chat
feature in all platforms

Desktop/Web Android i0S
Group messages Group messages Group messages
D Messages Chat Chat Chat

l Events
l Photos

l Android Photo Albums Photo Albums Photo Albums

Upcoming Events Upcoming Events Upcoming Events

Birthdays Birthdays Birthdays

D i0S Photo Picker Photo Picker Photo Picker

Product Experts

https://www.youtube.com/watch?v=Nffzkkdq7GM

https://www.youtube.com/watch?v=Nffzkkdq7GM

Good Teams create Intentional Opportunities for
Knowledge Sharing

e |deally, scale linearly (or sub linearly) with org
growth

* What kind of approaches do you think could help
improve knowledge sharing?
* "Two Pizza" Teams
* Pair Programming
* Code Reviews
* Multiple sharing channels

“Two-Pizza” Teams make -
knowledge sharing easier

Q: How many people on a team?

A: “No more than you could feed with two pizzas”
Rationale:

e Decrease communication burdens

* Focus conversations to relevant topics

13

Code Review is a Knowledge Sharing
Opportunity

Ranked Motivations From Developers

Project lead Top 1 Second [Third I
Education Finding defects | | [|
L Maintaining Code Improvement | |
Maintaining norms G Alternative Solutions | |
. norms atekeepin
Readab'hty Deve Ioper ping Other Knowledge Transfer
reviewers teams Team Awareness
Improving Dev Process
Education :
Main taining Edus:a tion ' Share C<.3de (?wnershlp
norms ccident prevention Avoid Build Breaks
Track Rationale
New team Other team Team Assessment
members members 0 200 400 600
Responses

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018 “Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird,
ICSE 2013

Scaling Communication linearly requires
multiple channels

* Knowledge sharing needs to scale linearly (or sub linearly) with org
growth:
* Mentorship
* Q&A
* Mailing lists
e Tech talks
* Documentation

15

Standardize and Document Best Practices

Wikis, blogs, tech talks scale-out more than 1:1
mentoring

* Rule of thumb: once you have explained
something to more than two people, maybe you
should write a blog post

* Effective organizations cultivate programs to
organically collect and share knowledge and best
practices

* Example: Google “Testing on the Toilet” (c 2006)

* significantly increased and sustained adoption of the
tools advertised on flyers in toilets

Episode 284

Testing on the Toilet Presents... Healthy Code on the Commode AP E01S

@ Automatic formatting for C++ 7
8 &) by Daniel Jasper in Munich @

=

Are you tired of hitting space and backspace more often then anything else while coding? Are you
annoyed by fighting over par ter and ¢ t alig] t in code reviews?

Consistent formatting allows readers to quickly scan and interpret code, dedicating their attention to
what the code does and how it works. Without this consistency, effort is wasted parsing the wide variety
of personal styles code might follow. However, keeping your code formatting nice and shiny is not a
good task for humans. Luckily, we now have clang-format, which can do this tedious task for you.
Clang-format produces both readable and Google style-compliant code:

$ cat file.cc

int a;// clang-format can ..

int bbb; // .. align trailing comments.

#define UNDERSTAND MULTILINE_MACROS int cc; int d;

LOG (INFO)<<".. align operators\n"<<".. and many more things";

$ clang-format file.cc -style Google

int a; // clang-format can ..

int bbb; // .. align trailing comments.

#define UNDERSTAND MULTILINE_MACROS \
int cc; \
int d;

LOG (INFO) << ".. align operators\n"

<< ".. and many more things";

Conveniently integrating with your editor, you can format the current statement or a selected
region (available for vim, emacs and eclipse - go/clang-format). You can also reformat unified diffs, e.g.
in a CitC client, by:

$ g4 diff -dul | /usr/lib/clang-format/clang-format-diff.py

In addition to making the editor-based code development faster and more fun, consistently using clang-
format provides other advantages:

+ Code reviewers don't even need to consider whether all your spaces are correct

« Source files become fully machine editable, e.g. for API maintenance

So, give it a try and see how much fun it is to just type everything into a single line and let clang-format
do the rest. If you encounter clang-format messing up the formatting, e.g. producing style guide
violations, please file a bug on go/clang-format-bug.

-format Scythe
Learn how to use clang-format in your workflow. Want to see your dead code and automatically get rid of it?
http:/go/clang-format http://go/scythe

Find out more: go/CodeHealth Read all TotTs online: http://tott

Do Developers Discover New Tools In The Toilet?

* Researchers studied the efficacy of the flyer

* Exposure to the flyers significantly increased
and sustained adoption of the tools
advertised on them

* Provided more “memorability” compared to
social media (location + curation)

e Limitations

* Not evenly posted and updated globally
(volunteer effort; minority tax)

 Editorial curation is difficult
* Not all episodes are relevant to all teams

“Do Developers Disocver New Tools on The Toilet?”, Emerson Murphy-Hill et al, ICSE 2019

Episode 284

Testing on the Toilet Presents... Healthy Code on the Commode AP E01S

@ Automatic formatting for C++ 7
8 &) by Daniel Jasper in Munich @

Are you tired of hitting space and backspace more often then anything else while coding? Are you
annoyed by fighting over par ter and ¢ t alig] t in code reviews?

Consistent formatting allows readers to quickly scan and interpret code, dedicating their attention to
what the code does and how it works. Without this consistency, effort is wasted parsing the wide variety
of personal styles code might follow. However, keeping your code formatting nice and shiny is not a
good task for humans. Luckily, we now have clang-format, which can do this tedious task for you.
Clang-format produces both readable and Google style-compliant code:

$ cat file.cc

int a;// clang-format can ..

int bbb; // .. align trailing comments.

#define UNDERSTAND MULTILINE_MACROS int cc; int d;

LOG (INFO)<<".. align operators\n"<<".. and many more things";

$ clang-format file.cc -style Google

int a; // clang-format can ..

int bbb; // .. align trailing comments.

#define UNDERSTAND MULTILINE_MACROS \
int cc; \
int d;

LOG (INFO) << ".. align operators\n"

<< ".. and many more things";

Conveniently integrating with your editor, you can format the current statement or a selected
region (available for vim, emacs and eclipse - go/clang-format). You can also reformat unified diffs, e.g.
in a CitC client, by:

$ g4 diff -du0 | /usr/lib/clang-format/clang-format-diff.py

In addition to making the editor-based code development faster and more fun, consistently using clang-
format provides other advantages:

+ Code reviewers don't even need to consider whether all your spaces are correct

« Source files become fully machine editable, e.g. for API maintenance

So, give it a try and see how much fun it is to just type everything into a single line and let clang-format
do the rest. If you encounter clang-format messing up the formatting, e.g. producing style guide
violations, please file a bug on go/clang-format-bug.

-format Scythe
Learn how to use clang-format in your workflow. Want to see your dead code and automatically get rid of it?
http:/go/clang-format http://go/scythe
Find out more: go/CodeHealth Read all TotTs online: http://tott

https://ieeexplore.ieee.org/document/8812046
https://ieeexplore.ieee.org/document/8812046
https://ieeexplore.ieee.org/document/8812046

Communicate Development Activities with
Different Channels

* On average, developers use eleven channels to stay up-to-date on
development activities

]
o)
8 2 | B =
o] = = @ =1
5 2 @ %) EQ 93] n & 9 ke)
5} =% 5 g) 7] o - =
1 = 7] = b= = <
E 218 0 | m g _5 g | LA =
cle| 2|3 |2 |28 | & | ¢ ®|E
gl |sl2 B2 2| E|E|& @ S |2l el g8
& g2 ElA|E| S|SB S 82|88 2|28
Tlgle| g S| 3| 8| % 2l el= |« N R - B =T RV I
gle|l2 5 ElE|2 |2 |82 |2 5|8 5 2|2 |28
Sl &l=z|S|g|lE|A|E &L |z |8 |0 & |2 |&|5|S5|&
analog digital and socially enabled
Stay Up to Date
Find Answers
Learn
Discover Others
Connect With Others
Get and Give Feedback
Publish Activities
Watch Activities
Display Skills/ Accomplishments
Assess Others
Coordinate With Others
Legend: 0-10% | 10-20% | 20-30% | 30-40% | 40-50% 50-60% | 60-70% 70-80% 80-90% 90-100%
(percentage of survey respondents mentioning a channel being used for an activity)

TABLE 4
Channels used by our respondents and the activities they support.

“How Social and Communication Channels Shape and Challenge a Participatory Culture in Software Development” Storey et al, TSE 2015

How do you encourage team members
to treat each other well?

19

Three Pillars of Social Skills

* Pillar 1: Humility: You are not the center of the universe (nor is your

code!). You’re neither omniscient nor infallible. You’re open to self-
Improvement.

* Pillar 2: Respect: You genuinely care about others you work with. You
treat them kindly and appreciate their abilities and accomplishments.

* Pillar 3: Trust: You believe others are competent and will do the right
thing, and you're OK with letting them drive when appropriate.

From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick 20

https://learning.oreilly.com/library/view/debugging-teams/9781491932049/

Failures

In software, in humans, and in
processes.

How do we learn:

* What went well?

* What went wrong?

e Where we got lucky?

* How do we prevent it from
happening again?

How Not to Respond to Failures

1. Some engineer contributes to failure or incident
2. Engineer is punished/shamed/blamed/retrained

3. Engineers as a whole become silent on details to management to
avoid being scapegoated

4. Management becomes less informed about what actually is
happening, do not actually find/fix root causes of incidents

5. Process repeats, amplifying every time

22

Blameless Post-Mortems

* What actions did you take at the time?
 What effects did you observe at the time?
* What were the expectations that you had?
* What assumptions did you make?

 What is your understanding of the timeline of events as they
occurred?

23

Lessons Learned

What went well

e Monitoring quickly alerted us to high rate (reaching ~100%) of HTTP 500s
e Rapidly distributed updated Shakespeare corpus to all clusters

What went wrong

e We're out of practice in responding to cascading failure

o We exceeded our availability error budget (by several orders of magnitude) due to the exceptional surge of traffic
that essentially all resulted in failures

Where we got lucky'°®

e Mailing list of Shakespeare aficionados had a copy of new sonnet available
e Server logs had stack traces pointing to file descriptor exhaustion as cause for crash

e Query-of-death was resolved by pushing new index containing popular search term

24

https://sre.google/sre-book/example-postmortem/

Blameless Post-Mortems: Real World
Example

Summary of the AWS Service Event in the Northern Virginia (US-EAST-1)
Region

December 10th, 2021

We want to provide you with some additional information about the service disruption that occurred in the Northern Virginia (US-EAST-1) Region on December 7th, 2021.

Issue Summary

To explain this event, we need to share a little about the internals of the AWS network. While the majority of AWS services and all customer applications run within the main AWS
network, AWS makes use of an internal network to host foundational services including monitoring, internal DNS, authorization services, and parts of the EC2 control plane. Because of
the importance of these services in this internal network, we connect this network with multiple geographically isolated networking devices and scale the capacity of this network
significantly to ensure high availability of this network connection. These networking devices provide additional routing and network address translation that allow AWS services to
communicate between the internal network and the main AWS network. At 7:30 AM PST, an automated activity to scale capacity of one of the AWS services hosted in the main AWS
network triggered an unexpected behavior from a large number of clients inside the internal network. This resulted in a large surge of connection activity that overwhelmed the
networking devices between the internal network and the main AWS network, resulting in delays for communication between these networks. These delays increased latency and errors
for services communicating between these networks, resulting in even more connection attempts and retries. This led to persistent congestion and performance issues on the devices

connecting the two networks.

This congestion immediately impacted the availability of real-time monitoring data for our internal operations teams, which impaired their ability to find the source of congestion and
resolve it. Operators instead relied on logs to understand what was happening and initially identified elevated internal DNS errors. Because internal DNS is foundational for all services
and this traffic was believed to be contributing to the congestion, the teams focused on moving the internal DNS traffic away from the congested network paths. At 9:28 AM PST, the
team completed this work and DNS resolution errors fully recovered. This change improved the availability of several impacted services by reducing load on the impacted networking
devices, but did not fully resolve the AWS service impact or eliminate the congestion. Importantly, monitoring data was still not visible to our operations team so they had to continue
resolving the issue with reduced system visibility. Operators continued working on a set of remediation actions to reduce congestion on the internal network including identifying the top
sources of traffic to isolate to dedicated network devices, disabling some heavy network traffic services, and bringing additional networking capacity online. This progressed slowly for
several reasons. First, the impact on internal monitoring limited our ability to understand the problem. Second, our internal deployment systems, which run in our internal network, were
impacted, which further slowed our remediation efforts. Finally, because many AWS services on the main AWS network and AWS customer applications were still operating normally, we
wanted to be extremely deliberate while making changes to avoid impacting functioning workloads. As the operations teams continued applying the remediation actions described
above conaestion sianificantlvy imporoved bv 1:34 PM PST and all network devices fullv recovered bv 2:22 PM PST

Conducting Postmortems

* Apply this technique after any event you would like to avoid in the
future

* Apply this to technical and non-technical events

* Focus on improvement, resilience, and collaboration: what could any
of the actors have done better?

e Google’s generic postmortem template

26

https://docs.google.com/document/d/1ob0dfG_gefr_gQ8kbKr0kS4XpaKbc0oVAk4Te9tbDqM/edit
https://docs.google.com/document/d/1ob0dfG_gefr_gQ8kbKr0kS4XpaKbc0oVAk4Te9tbDqM/edit

(a) Organizations and Conferences

(1) Insist on doing everything through
“channels.” Never permit short-cuts to be taken
in order to expedite decisions.

(2) Make “‘speeches.” Talk as frequently as
possible and at great length. Tllustrate your
“points’ by long anecdotes and accounts of per-
sonal experiences, Never hesitate to make a few
appropriate “patriotic' comments.

(3) When possible, refer all matters to
committees, for “(urther study and considera-
tion." Attempt to make the committees as large
as possible — never less than five.

(4) Bring up irrelevant issues as (requently
as possible.

(5) Haggle over precise wordings ol com-
munications, minutes, resolutions.

(6) Refler back to matters decided upon at
the last meeting and attempl to re-open the
question of the advisability of that decision.

(7) Advocate '‘caution." Be ''reasonable”
and urge your fellow-conlerces to be '‘reason-
able” and avoid haste which might result in
embarvassments or difficulties later on.

(8) Be worried about the propriety of any
decision — raise the question of whether such
action as is contemplated lies within the juris-
diction of the group ov whether it might conflict
with the policy of some higher echelon.

Anti-Patterns for Teams
(CIA Sabotage Guide c 1944)

(11) General Interference with Organizations and
Production

(b) Managers and Supervisors
(1) Demand written orders.

(2) “Misunderstand” orders. Ask endless
questions or engage In long correspondence

about such orders. Quibble over them when You
can,

(3) Do everything possible to delay -the
dellvery of orders. Even though parts of an of€ler
may be ready beforehand, don’ 't deliver it unitil
it is completely ready,

(4) Don't order new working materlals
until your current stocks have been virtually ex-
hausted, so that the slightest delay In filling
your order will mean a shutdown.,

(9) Order high-quality materials which &re
hard to get. If you don’t get them argue abéut
it. Warn that inferior materials will mean in-
ferior work,

(6) In making work assignments, always

- sign out the unimportant jobs first. See that

the important jobs are assigned to inefMcleént
workers of poor machines.

(7) Insist on perfect work in relatively un-
important products; send back for refinishing
those which have the least flaw. Approve oLher
defective parts whose flaws are not visible to
the naked eye.

(8) Make mistakes in routing so that parts
and materials will be sent to the wrong place in
the plant.

(9) When training new workers, give in-
complete or misleading instructions.

(10) To lower morale and with it, produc-
tion, be pleasant to inefficient workers; give
tham undeserved promotions. Discriminate
against efficient workers, complain unjustly
about their work.

(11) Hold conferences when there Is more.
critical work to be done.

(12) Multiply paper work in plausible ways.
Start duplicate flles.

(13) Multlply the procedures and clearances
involved In issuing Instructlons, pay checks, and
s0 on. See that three people have to approve
everything where one would do.,

(14) Apply all regulations to the last letter.

(¢) Office Workers

(1) Make mistakes in quantities of materlal
when you are copying orders. Confuse similar
names. Use wrong addresses.

(2) Prolong correspondence with govern-
ment bureaus.

(3) Misfile essential documents.

(4) In making carbon coples, make one too.
few, so that an extra copying job will have to
be done.

(5) Tell important callers the boss is busy
or talking on another telephone. '

(8) Hold up mail until the next collection.

"(7) Spread disturbing rumors that sound
like inslde dope.
(d) Employees

(1) Work slowly. Think out ways to in-
crease the number of movements necessary on
your job: use a light hammer instead of a heavy
one, try to make a small wrench do when a big
one is necessary, use little force where consider-
able force is needed, and so on.

(2) Contrive as many Interruptions to your
work as you can: when changing the material
on which you are working, as you would on a
lathe:or punch, take needless time to do it. If
you are cutting, shaping or doing other meas-

ured work, measure dimensions-twice as often
as you need to. When you go to the lavatory,
spend & longer time there than is necessary.
Forget tools so that you will have to go back
after them.

30

HRT Example: Code Review

This is personal Is thig really that black and white?

Are we demanding a specific change? Everyone else does it right,

therefore you are stupid

From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick

28

https://learning.oreilly.com/library/view/debugging-teams/9781491932049/

HRT Example: Code Review

“Man, you totally got the control flow wrong on that method there. You should be
using the standard foobar code pattern like everyone else”

Hmm, I’'m confused bylithe control flow in this section here. | wonder if the foobar
code pattern miglt make this clearer and easier to maintain?

Hunfility! This is about me, not you

From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick 29

https://learning.oreilly.com/library/view/debugging-teams/9781491932049/

Learning Goals for this Lesson

e At the end of this lesson, you should be able to

e Explain key advantages of working in a team and sharing
information with your team

* Describe the HRT pillars of social interaction

* Understand why small teams are effective for agile
processes

* Apply root-cause analysis to construct a blameless post-
mortem of a team project

30

	Slide 1: CS 4530: Fundamentals of Software Engineering Lesson 4.3: Teams
	Slide 2: software engineering must encompass 3 Ps:
	Slide 3: Learning Goals for this Lesson
	Slide 4: Why Teams? “The 10x Engineer”
	Slide 5: Why Teams? Software Engineering Draws on Many Skills
	Slide 6: Why Teams? The Bus Factor
	Slide 7: Teams are hard: Brooks’ Law
	Slide 8: What goes wrong with teams in software development?
	Slide 9: How do we structure teams efficiently?
	Slide 10: Facebook originally organized teams by platform each managed the app on their own platform only
	Slide 11: But they eventually switched to "product" teams…
	Slide 12: Good Teams create Intentional Opportunities for Knowledge Sharing
	Slide 13: “Two-Pizza” Teams make knowledge sharing easier
	Slide 14: Code Review is a Knowledge Sharing Opportunity
	Slide 15: Scaling Communication linearly requires multiple channels
	Slide 16: Standardize and Document Best Practices
	Slide 17: Do Developers Discover New Tools In The Toilet?
	Slide 18: Communicate Development Activities with Different Channels
	Slide 19: How do you encourage team members to treat each other well?
	Slide 20: Three Pillars of Social Skills
	Slide 21: Responding to Failures
	Slide 22: How Not to Respond to Failures
	Slide 23: Blameless Post-Mortems
	Slide 24
	Slide 25: Blameless Post-Mortems: Real World Example
	Slide 26: Conducting Postmortems
	Slide 27: Anti-Patterns for Teams
	Slide 28: HRT Example: Code Review
	Slide 29: HRT Example: Code Review
	Slide 30: Learning Goals for this Lesson

