
CC BY-SA

© 2025 Released under the CC BY-SA license

CS 4530: Fundamentals of Software Engineering
Lesson 4.3: Teams

Adeel Bhutta and Mitch Wand

Khoury College of Computer Sciences

1

https://creativecommons.org/licenses/by-sa/4.0/


software engineering must encompass 3 Ps:

2

PROCESSES, PROGRAMS, AND PEOPLE



Learning Goals for this Lesson

• At the end of this lesson, you should be able to
• Explain key advantages of working in a team and sharing 

information with your team

• Describe the HRT pillars of social interaction

• Understand why small teams are effective for agile 
processes

• Apply root-cause analysis to construct a blameless post-
mortem of a team project

3



Why Teams? “The 10x Engineer”

4



Why Teams? Software Engineering Draws on 
Many Skills

• Nobody is an expert in everything:
• Product management

• Project management

• System-level design and architecture

• Unit-level design

• Development

• Testing

• Operations

• Maintenance



Why Teams? The Bus Factor

Even if one person can own all of a project, 
they shouldn’t be relied to



Teams are hard: Brooks’ Law

7

“Adding manpower to a late 
software project makes it 
later”

Fred Brooks, 1975



What goes wrong with teams in software 
development?

• How do you structure teams effectively?

• How do you encourage teams to share knowledge and collaborate?

• How do you encourage team-members to treat each other well?

• How do you respond to failures?

8



How do we 
structure teams 
efficiently?

• Examining Brooks’ Law: “Adding 
manpower to a late software 
project makes it later”

• How many communication links 
are needed to finish a task?

• Self-organizing teams have 
proven more effective

9



Facebook originally organized teams by platform 
each managed the app on their own platform only

• If you work on the android teams, you work on 
putting all of the apps on android 

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Desktop/Web

Product Experts

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Messages

Events

Photos

Android

iOS

Engineering Teams

https://www.youtube.com/watch?v=Nffzkkdq7GM

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Android

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

iOS

Platform Experts

https://www.youtube.com/watch?v=Nffzkkdq7GM


But they eventually switched to "product" 
teams…

• If you are in the chat group, you work on the chat 
feature in all platforms

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Android

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

iOS

Messages

Events

Photos

Android

iOS

Engineering Teams

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Desktop/Web

Product Experts

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

https://www.youtube.com/watch?v=Nffzkkdq7GM

https://www.youtube.com/watch?v=Nffzkkdq7GM


Good Teams create Intentional Opportunities for 
Knowledge Sharing

• Ideally, scale linearly (or sub linearly) with org 
growth

• What kind of approaches do you think could help 
improve knowledge sharing?

• "Two Pizza" Teams

• Pair Programming

• Code Reviews

• Multiple sharing channels



“Two-Pizza” Teams make 
knowledge sharing easier

Q: How many people on a team?

A: “No more than you could feed with two pizzas”

Rationale:

• Decrease communication burdens

• Focus conversations to relevant topics

13



Code Review is a Knowledge Sharing 
Opportunity

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018 “Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, 
ICSE 2013



Scaling Communication linearly requires 
multiple channels

• Knowledge sharing needs to scale linearly (or sub linearly) with org 
growth:
• Mentorship

• Q&A

• Mailing lists

• Tech talks

• Documentation

15



Standardize and Document Best Practices

Wikis, blogs, tech talks scale-out more than 1:1 
mentoring

• Rule of thumb: once you have explained 
something to more than two people, maybe you 
should write a blog post

• Effective organizations cultivate programs to 
organically collect and share knowledge and best 
practices

• Example: Google “Testing on the Toilet” (c 2006)
• significantly increased and sustained adoption of the 

tools advertised on flyers in toilets



Do Developers Discover New Tools In The Toilet?

• Researchers studied the efficacy of the flyer

• Exposure to the flyers significantly increased 
and sustained adoption of the tools 
advertised on them

• Provided more “memorability” compared to 
social media (location + curation)

• Limitations
• Not evenly posted and updated globally 

(volunteer effort; minority tax)
• Editorial curation is difficult
• Not all episodes are relevant to all teams

“Do Developers Disocver New Tools on The Toilet?”, Emerson Murphy-Hill et al, ICSE 2019

https://ieeexplore.ieee.org/document/8812046
https://ieeexplore.ieee.org/document/8812046
https://ieeexplore.ieee.org/document/8812046


Communicate Development Activities with 
Different Channels

• On average, developers use eleven channels to stay up-to-date on 
development activities

“How Social and Communication Channels Shape and Challenge a Participatory Culture in Software Development” Storey et al, TSE 2015



How do you encourage team members 
to treat each other well?

19



Three Pillars of Social Skills

• Pillar 1: Humility: You are not the center of the universe (nor is your 
code!). You’re neither omniscient nor infallible. You’re open to self-
improvement.

• Pillar 2: Respect: You genuinely care about others you work with. You 
treat them kindly and appreciate their abilities and accomplishments.

• Pillar 3: Trust: You believe others are competent and will do the right 
thing, and you’re OK with letting them drive when appropriate.

20From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick

https://learning.oreilly.com/library/view/debugging-teams/9781491932049/


Responding to 
Failures

21

In software, in humans, and in 
processes.

How do we learn:
• What went well?
• What went wrong?
• Where we got lucky?
• How do we prevent it from 

happening again?



How Not to Respond to Failures

1. Some engineer contributes to failure or incident

2. Engineer is punished/shamed/blamed/retrained

3. Engineers as a whole become silent on details to management to 
avoid being scapegoated

4. Management becomes less informed about what actually is 
happening, do not actually find/fix root causes of incidents

5. Process repeats, amplifying every time

22



Blameless Post-Mortems

• What actions did you take at the time?

• What effects did you observe at the time?

• What were the expectations that you had?

• What assumptions did you make?

• What is your understanding of the timeline of events as they 
occurred?

23



24Google’s Example Postmortem

https://sre.google/sre-book/example-postmortem/


Blameless Post-Mortems: Real World 
Example

25



Conducting Postmortems

• Apply this technique after any event you would like to avoid in the 
future

• Apply this to technical and non-technical events

• Focus on improvement, resilience, and collaboration: what could any 
of the actors have done better?

• Google’s generic postmortem template

26

https://docs.google.com/document/d/1ob0dfG_gefr_gQ8kbKr0kS4XpaKbc0oVAk4Te9tbDqM/edit
https://docs.google.com/document/d/1ob0dfG_gefr_gQ8kbKr0kS4XpaKbc0oVAk4Te9tbDqM/edit


Anti-Patterns for Teams
• (CIA Sabotage Guide c 1944)



HRT Example: Code Review

28

“Man, you totally got the control flow wrong on that method there. You should be 
using the standard foobar code pattern like everyone else”

This is personal Is this really that black and white?

Are we demanding a specific change? Everyone else does it right,
therefore you are stupid

From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick

https://learning.oreilly.com/library/view/debugging-teams/9781491932049/


HRT Example: Code Review

29From “Debugging Teams” by Ben Collins-Sussman and Brian Fitzpatrick

“Man, you totally got the control flow wrong on that method there. You should be 
using the standard foobar code pattern like everyone else”

“Hmm, I’m confused by the control flow in this section here. I wonder if the foobar 
code pattern might make this clearer and easier to maintain?

Humility! This is about me, not you

https://learning.oreilly.com/library/view/debugging-teams/9781491932049/


Learning Goals for this Lesson

• At the end of this lesson, you should be able to
• Explain key advantages of working in a team and sharing 

information with your team

• Describe the HRT pillars of social interaction

• Understand why small teams are effective for agile 
processes

• Apply root-cause analysis to construct a blameless post-
mortem of a team project

30


	Slide 1: CS 4530: Fundamentals of Software Engineering Lesson 4.3: Teams
	Slide 2: software engineering must encompass 3 Ps:
	Slide 3: Learning Goals for this Lesson
	Slide 4: Why Teams? “The 10x Engineer”
	Slide 5: Why Teams? Software Engineering Draws on Many Skills
	Slide 6: Why Teams? The Bus Factor
	Slide 7: Teams are hard: Brooks’ Law
	Slide 8: What goes wrong with teams in software development?
	Slide 9: How do we structure teams efficiently?
	Slide 10: Facebook originally organized teams by platform each managed the app on their own platform only
	Slide 11: But they eventually switched to "product" teams…
	Slide 12: Good Teams create Intentional Opportunities for Knowledge Sharing
	Slide 13: “Two-Pizza” Teams make knowledge sharing easier
	Slide 14: Code Review is a Knowledge Sharing Opportunity
	Slide 15: Scaling Communication linearly requires multiple channels
	Slide 16: Standardize and Document Best Practices
	Slide 17: Do Developers Discover New Tools In The Toilet?
	Slide 18: Communicate Development Activities with Different Channels
	Slide 19: How do you encourage team members to treat each other well?
	Slide 20: Three Pillars of Social Skills
	Slide 21: Responding to Failures
	Slide 22: How Not to Respond to Failures
	Slide 23: Blameless Post-Mortems
	Slide 24
	Slide 25: Blameless Post-Mortems: Real World Example
	Slide 26: Conducting Postmortems
	Slide 27: Anti-Patterns for Teams
	Slide 28: HRT Example: Code Review
	Slide 29: HRT Example: Code Review
	Slide 30: Learning Goals for this Lesson

